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hypre: a Library of High Performance
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Robert D. Falgout and Ulrike Meier Yang

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
P.0.Box 808, L-560 Livermore, CA 94551

Abstract. hypreis a software library for the solution of large, sparse lin-
ear systems on massively parallel computers. Its emphasis is on modern
powerful and scalable preconditioners. iypre provides various concep-
tual interfaces to enable application users to access the library in the
way they naturally think about their problemns. This paper presents the
conceptual interfaces in hypre. An overview of the preconditioners that
are available in hypre is given, including some numerical results that
show the efficiency of the library.

1 Introduction

The increasing demands of computationally challenging applications and the ad-
vance of Targer more powerful computers with more complicated architectiures
have necessitated the development of new solvers and preconditioners. Since the
implementation of these methods is quite complex, the use of high performance
libraries with the newest efficient solvers and preconditioners becomes more im-
portant for promulgating their use into applications with relative case.

hvpre has been designed with the primary goal of providing users with ad-
vanced scalable parallel preconditioners. Issues of robustness, case of use, fexi-
hility and interoperability have also been very important. It can be used both
as a solver package and as a framework for algorithmn development. Its object
model is more general and flexible than the current generation of solver libraries
[7].

Lypre also provides several of the most commonly used solvers, such as con-
. o b

jugate gradient for symmetric systems or GMRES for nousymmetric systems to

be used in conjunction with the preconditioners.

Design innovations have been made to enable application users access to the
library in the way that they naturally think about their problems. For example,
applications developers that use structured grids, typically think of their prob-
lens in terms of stencils or grids. ivpre’s users do not have to learn complicated
sparse matrix structures; instead hypre does the work of building these data
structures through various conceptual interfaces. The conceptual interfaces cur-
rently implemented include stencil-based structured/semi-structured interfaces,
a finite-clement hased unstructured interface, and a traditional linear-algebra
based interface.



The first part of this paper describes these interfaces and the motivations
behind their design. The second part gives an overview of the preconditioners
that are currently in the library with brief descriptions of the algorithms and
some highlights of their performance characteristics. Sinee space is limited, it
is not possible to describe the algorithms in detail, but various references are
included for those who are interested in further information. The paper coucludes
with some remarks on additional software and improvements of already existing
codes that arve planned to be included in hypre in the future.

2 Conceptual Interfaces

Each application to be implemented lends itself to natural ways of thinking of the
problem. If the application uses structured grids, a natural way of formulating
it would be in terms of grids and stencils, whereas for an application that uses
unstructured grids and finite clements it is more natural to access the precon-
ditioners and solvers via clements and element stiffness matrices. Consequently
the provision of various interfaces facilitates the nse of the library.

Conceptual interfaces also decrease the coding burden for users. The most
common interface used in libraries today is a linear-algebraic one. This interface
requires that the user compute the mapping of their discretization to row-column
entries in a matrix. This code can be guite complex, e.g. conusider the problem
of ordering the equations and unknowns on the composite grids used in strue-
tured adaptive mesh refinement (SAMR) codes. The use of a conceptual interface
merely requires the user to input the information that defines the problem to be
solved, leaving the forming of the actual Hinear system as a library implementa-
tion detail hidden from the user.

Another reason for conceptual interfaces, maybe the most compelling one,
is that they provide access to a large array of powerful scalable linear solvers
that need the extra information heyond just the matrix. For example, geometric
multigrid (GMG) can not be used through a lincar-algebraic interface, since it
is formulated in terms of grids. »

Similarly, in many cases, these interfaces allow the use of other data storage
schemes with less memory overhead and provide for more efficient computational
kernels.

Fig. 1 illustrates the idea of conceptual interfaces. Oun the left are specific
interfaces with algorithms and data structures that take advantage of more spe-
cific information. On the right are more general interfaces, algorithins and data
structures. Note that the more specific interfaces also give users access to gen-
eral solvers like algebraic multigrid (AMG) or incomplete LU factorization (ILU).
The top row shows various concepts: structured grids, composite grids, unstruce-
tured grids or just plain matrices. Tn the second row, various solvers/ precon-
ditioners are listed. Each of those requires different information from the user,
which is provided through the conceptual interfaces. Geometric multigrid, e.g.,
needs a stractured grid and can only be used with the left most interface, AMGe
[2], an algebraic multigrid method, needs finite element information, whereas
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Fig. 1. Graphic illustrating the notion of conceptual interfaces.
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general solvers can be used with any interface. The bottom row contains a list
of data layonts or matrix/vector storage schemes that can be used for the im-
plementation of the various algorithins. The relationship between lincar solver
and storage scheme is sbnilar to that of interface and linear solver.

hypre currently supports four conceptual interfaces: a structured-grid system
interface, a semi-structured-grid system interface, a finite-element interface and
a lincar-algebraic interface.

Note that Iiypre does not partition the problem, bhut builds the internal par-
allel data structures (often quite complicated) according to the partitioning of
the application that the user provides.

2.1 Structured-Grid System Interface {Struct)

This interface is appropriate for scalar applications whose erids consists of unions
of Togically rectangular grids with a fixed stencil pattern of nonzeros at cach grid
point. It also enables users access to hypre’s most efficient scalable solvers for
scalar structured-grid applications, such as the geometric multigrid methods
SMG and PFMG. Sce also Sections 3.1 and 3.2. The user defines the stencil and
the grid; the right hand side and the matrix are then defined in terms of the
stencil and the grid.

2.2  Semi-Structured-Grid System Interface (SStruct)

This interface is appropriate for applications whose grids are mostly structured,
but with sone unstructured features, e.g. block structured grids (such as shown
in Fig. 2), composite grids in structured adapative mesh refinement (AMR)
applications, and overset grids. It additionally allows for more general PDEs

than the Struct interface, such as multiple variables (systein PDEs) or multiple



variable types (c.g. cell centered, face centered, ete.). The user needs to define
stencils, grids, a graph that connects the various components of the final grid,
the right hand side and the matrix.
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Fig. 2. An example block-structured grid, distributed across many processors.

2.3 Finite Element Interface (FEI)

This is appropriate for nsers who form their systems from a finite clement dis-
cretization. The interface mirvors typical finite element data structures, including
clement stiffness matrices. Though this interface is provided in hypre | its defi-
nition was determined elsewhere [8]. This interface requires the definition of the
clement stiffness matrices and element connectivities. The mapping to the data
strneture of the underlying solver is then performed by the interface.

2.4 Linear-Algebraic System Interface (1J)

This is the traditional linear-algebraic interface. The user needs to define the
right hand side and the matrix in the general linear-algebraic sense, el in terms
of row and columm indices. This interface provides access only to the wost general
data structures and solvers and as such should only be used when none of the
grid-based interfaces is applicable.

3 Preconditioners
This section gives an overview of the precouditioners currently available in hypre

via the conceptual interfaces. hypre also provides solvers to be used in conjunc-
tion with the preconditioners such as Jacobi, conjugate gradient and GMRES.



Great cfforts have heen made to generate highly efficient codes. Of particular
concern has been the scalability of the solvers. Roughly speaking, a method is
scalable if the time required to produce the solution remains essentially constant
as both the problem size and the computing resources incrcase. All methods
implemented here are generally scalable per iteration step, the multigrid methods
are also scalable with regard to iteration count.

All the solvers use MPI for parallel processing. Most of them have also been
threaded using OpenMP, making it possible to run hypre in a mixed message-
passing/threaded mode, of potential benefit on clusters of SMPs.

3.1 SMG

SMG is a parallel semicoarsening multigrid solver targeted at the linear systems
arising from finite difference, finite volume, or finite element diseretizations of
the diffusion cquation

v. (DVM) + ou = f (1)

on logically rectangular grids. The code solves both 2D and 3D problems with
discretization stencils of up to 9-point in 2D and up to 27-point in 3D. For
details on the algorithm and its parallel implementation/performance see [21, 3,
10]. SMG is a particularly robust method. The algorithm semicoarsens in the
z-direction and uses plane smoothing. The xy plane solves are effected by one
V-ocvele of the 2D SMG algorithm, which semicoarsens in the v-direction and
uses line smoothing

3.2 PFMG

PFMG is a parallel semicoarsening multigrid solver similar to SMG. It is de-
seribed in detail in [1, 10]. PFMG uses simple pointwise smoothing instead of
plane smoothing. As a result, it is less robust than SMG, but more efficient. per
V-cyele, The largest run with PFMG as a preconditioner for conjugate gradient
was applied to a problem with 1 billion unknowns on 3150 processors of the ASCI
Red computer and took only 54 seconds. Recently we added a PFMG solver for
svstems of PDEs available through the semi-structured interface.

3.3 BoomerAMG

BoomerAMG is a parallel uplemenation of algebraic multigrid. It requires only
the lincar system. BoomerA MG uses two types of parallel coarsening strategies.
The first one, refered to as RS-based coarsening, is based on the highly sequen-
tial coarsening strategy used in classical AMG [20]. To obtain parallelism, each
processor coarsens independently, followed by various strategies for dealing with
the processor boundaries. Obviously, this approach depends on the number of
processors and on the distribution of the domain across processors. The second
type of coarsening, called CLIP-coarsening 9], is based on parallel maximum




independent set algorithins [19, 16] and generates a processor independent coars-
ening. CLJP-coarsening has proven to be more efficient for truly unstructured
erids, whereas RS-hased coarsenings lead to better results on structured prob-
lems. For more detailed information on the implementation of the CLJIP coars-
ening scheme see [11). For a general description of the coarsening schemes and
the interpolation used within BoomerAMG as well as various munerical results,
see [12].

BoomerAMG provides classical pointwise smoothers, such as weighted Jacobi
relaxation, a hybrid Gau-Seidel/ Jacobi relaxation scheme and its symmetric
variant. It also provides more expensive smoothers, such as overlapping Schwarz
smoothers, as well as access to other methods in hypre such as ParaSails, PILUT
and Euclid. These smoothers have shown to be effective for certain problems for
which pointwise stmoothers have failed, such as elasticity problems [22].

BoomerAMG can also be used for solving systems of PDEs if given the
additional information on the multiple variables per points. The function or
‘unknown’ approach coarsens cach physical variable separately and interpolates
only within variables of the same type. By exploiting the system nature of the
problem, this approach often leads to significantly improved performance, lower
memory usage and better scalability. See Table 1 which contains results for a
structured 2-dimensional clasticity problem on the unit square, run on the ASCI
Blue Pacific computer.

scalar BoomerAMG systems BoomerAMG

grid size|# of proces. time (# of its)) time (# of its)
80 x 80 1 12.4(58) 11(8)
160 x 160 4 130.4(112) 6.3 (9)
320 x 320 16 317.5(232) 8.6(10)
640 x 640 64 1238.2(684) 14.4(13)

Table 1. Test results for a 2-dimensional model elasticity problen

Table 2 contains results for a 3-dimensional elasticity problem on a thin plate
with a circular hole in its center. The problem has 215,055 variables and was run
on 16 processors of the ASCI White computer. The results show that for this
problem BoomerAMG as a solver is not sufficient, but it does make an effective
preconditioner.

3.4 ParaSails

ParaSails is a parallel implementation of a sparse approximate inverse precondi-
tioner. It approximates the inverse of 4 by a sparse matrix A/ by minimizing the
Frobenius norm of J—AAM . It uses graph theory to predict good sparsity patterns
for Al. ParaSails has been shown to be an efficient preconditioner for many prob-
lems, particularly since the minimization of the Frobenius norm of I — AA can
be decomposed into minimization problems for the individual rows of T — 43,




E()lvors ' H# of its.|t()tal time in socs.’

scaled CG 1665 34.8
ParaSails-CG 483 26.6
scalar BoomerAMG 1.C. -

scalar BoomerAMG-CG 53 28.9
systems BoomerAMG 78 40.6
systems BoomerAMG-CG 19 12.3

Table 2. Test results for an elasticity problem

leading to a highly parallel algorithm. A detailed description of the algorithm
can be found in [4] and implementation details in [5]. Particular emphasis has
been placed on a highly efficient implementation that incorporates special, more
efficient treatment of symmetric positive definite matrices and load balancing.
The end result is a code that has a very scalable setup phase and iteration steps.
See Table 3, which shows test results for ParaSails applied to the 3-dimensional
constant coefficient anisotropic diffusion problem 0.1w,, + uy, + 10u.. = 1 with
Dirichlet. boundary conditions. The local problem size is 60 x 60 x 60. Unlike
multigrid, convergence is not linearly scalable, and the number of iterations will
increase as the problem size increases. However, ParaSails is a general purpose
solver and can work well on problems where multigrid does not.

# of procs|# of its.|setup time|solve timeltime per it.
11 107 12.1 75.3 0.70
8 204 13.8 247.9 1.22
64, 399 15.4 536.6 1.34
216] 595 15.8 856.4 1.44
512p 790 17.4 1278.8 1.62
10000 979 | 171 1710.7 1.75

Table 3. Scalability of ParaSails with increasing problem size (216,000 per proc.)

3.5 PILUT

PILUT is a parallel preconditioner based on Saad’s dual-threshold incomplete
factorization algorithim. It uses a thresholding drop strategy as well as a mecha-
nism to control the maximum size of the ILU factors. It uses the Schur-complement.
approach to generate parallelism. The original code was written by Karypis and
Kumar for the T3D [18]. This version differs from the original version in that it
uses MPI and more coarse-grain parallelism.

3.6 Euchid

Euclid is a scalable implementation of the Paralle] ILU algorithm. It is Dest
thought of as an 7extensible ILU preconditioning framework”™, 1.e. Euclid can




support many variants of ILU(k) and ILUT preconditionings. Cwrrently it sup-
ports Block Jacobi ILU(E) and Parallel ILU (k) methods. Parallelism is obtained
via loeal and global reorderings of the matrix coefficients. A detailed description
of the algorithms can be found in [14,15].

Buclid has been shown to be very scalable with regard to setup time and
triangular solves. Fig. 3 shows results for a § point 2D convection diffusion
problem with 256 x 256 unknowns per processor.

PILU triangular solve scalability, ASCI Blue Pacific
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Fig. 3. Some scalability results for Euclid

4 Additional Information

The hypre library can be downloaded by visiting the hypre home page at the
URL http://www.1l1lnl.gov/CASC/hypre. It can be built by typing configure
followed by make. There are several options that can be used with configure.
For information on how to use those, one needs to type configure --help.
Although hypreis written in C, it can also be called from Fortran. More specific
information on hvpre and how to use it can be found in the users manual and
the reference manual, which are also available at the same URL.

5 Conclusions and Future Work

Overall, hypre containg a variety of highly efficient preconditioners and solvers,
available via user-friendly conceptual interfaces. Nevertheless, it is a project in
progress. As new research leads to better and more efficient algorithins, new
preconditioners will be added and old preconditioners will be improved.




On the list of new codes to be made available shortly is AMGe, an algebraic
multigrid method based on the use of local finite clement stiffness matrices [2,
17]. This method has proven to be more robust and to converge faster than
classical AMIG for some problems, c.g. elasticity problems. This code will be
available directly through the FEI interface.

Various improvements are planned for BoomerAMG. Classical GauB-Seidel
relaxation as well as multiplicative Schwarz smoothers are some of the numer-
ically most efficient methods, i.e. they lead to good convergence for AMG for
some problems, but arc also highly sequential. Plans are to add multi-coloring
techniques to obtain a parallel Gaufi-Seidel smoother and parallel multiplicative
Schwarz smoothers, as well as introduce smoothing and overrelaxation parame-
ters to increase convergence of the currently available parallel sinoothers. New
rescarch [6] has shown that through the use of certain geometric components,
better coarsenings can be developed that may lead to better convergence and
lower memory regnirements for certain problems. Investigations are underway
to make these new techniques available to the users.
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